6.1 Number Theory

Number Theory

- The numbers 1, 2, 3, ... are called the counting numbers or natural numbers.
- The study of the properties of counting numbers is called *number theory*.

Number Theory

- The numbers 1, 2, 3, ... are called the counting numbers or natural numbers.
- The study of the properties of counting numbers is called *number theory*.
- One interesting question is "What counting numbers can be written as a product of other numbers, and which cannot?"

If a and b are natural numbers, we say a | b to mean "a divides b" and it means that there is a number q with b = a q

We say that 5 divides 30 because there is a natural number 6 such that 5.6 = 30.

5|30 means "5 divides 30"

Related statements: If a | b

- a divides b
- a is a divisor of b
- a is a factor of b
- b is a multiple of a

Examples:

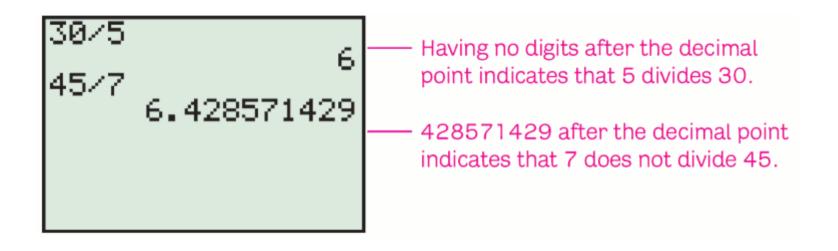
a) Does 7 | 21 ?

b) Does 2 | 3?

c) Does 5 | 15 ?

d) What numbers divide 6?

You can use a calculator to test divisibility.



A number is **factored** if it is written as a product of natural numbers.

Examples:

$$22 = 2 \times 11$$

$$49 = 7 \times 7$$

$$100 = 4 \times 25$$
 or 10×10 or ...

A number bigger than 1 that only has 1 and itself as factors is called a **prime** number.

Smallest examples:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37

There are an infinite number of primes.

Largest known prime:

2⁵⁷⁸⁸⁵¹⁶¹ -1

Which has 17425170 digits!

← So proud they made a stamp!

A number which is not prime is called **composite**.

Composite numbers have factors other than 1 and themself.

The **Sieve of Eratosthenes** is a method for generating a list of prime numbers.

Skip 1.

Circle 2, cross out multiples of 2.

Go to the next number, it is prime, cross out its muliples.

Repeat.

```
      1
      2
      3
      4
      5
      6
      7
      8
      9
      10

      11
      12
      13
      14
      15
      16
      17
      18
      19
      20

      21
      22
      23
      24
      25
      26
      27
      28
      29
      30

      31
      32
      33
      34
      35
      36
      37
      38
      39
      40

      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
```

If 2 | n, then (n/2) | n.

If 3 | n, then (n/3) | n.

. . .

If k | n, then (n/k) | n.

What is the largest number to check to see if n is prime?

If k = (n/k), then $k^2 = n$.

So only need to check numbers less than sqrt(n) to see if n is prime.

Prime Numbers

Example:

Determine whether 83 is prime.

Solution:

We don't need to check to see if any composites divide 83. Do you see why?

Also, we need not check primes greater than 10:

```
92 = 81, so 9 is less than \frac{9}{\sqrt{83}} < 10. 
the square root of 83. \frac{9}{\sqrt{83}} < 10. 
than the square root of 83.
```

None of the primes 2, 3, 5, and 7 divide 83, so 83 is prime.

Divisibility Tests and Factoring

Number Is Divisible by	Test	Example
2	The last digit of the number is divisible by 2.	2 divides 13,578 because 2 divides 8.
3	The sum of the digits is divisible by 3.	3 divides 21,021 because 3 divides $2+1+0+2+1=6$.
4	The number formed by the last two digits is divisible by 4.	102,736 is divisible by 4 because 4 divides 36.
5	The last digit is 0 or 5.	607,89 <mark>5</mark> is divisible by 5.
6	The number is divisible by both 2 and 3.	802,674 is divisible by both 2 and 3, so it is divisible by 6.
8	The number formed by the last three digits is divisible by 8.	8 divides 230,264 because 8 divides 264.
9	The sum of the digits is divisible by 9.	2,081,763 is divisible by 9 because 9 divides $2 + 0 + 8 + 1 + 7 + 6 + 3 = 27$.
10	The number ends in 0.	12,865,890 is divisible by 10.

Divisibility Tests and Factoring

- Example: Test the number 11,352 for divisibility by 6.
- Solution:
 - 11,352 is even, so it is divisible by 2.
 - -1+1+3+5+2=12, which is divisible by 3, so 11,352 is divisible by 3.
 - Since the number is divisible by both 2 and 3, it is divisible by 6.

Example: Is 201 a prime number?

Divisibility Tests and Factoring

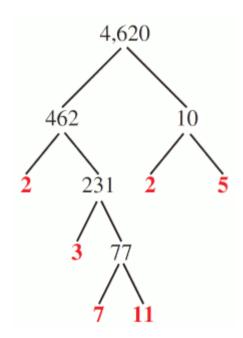
THE FUNDAMENTAL THEOREM OF ARITHMETIC Every natural number greater than 1 is a unique product of prime numbers, except for the order of the factors. (Product could mean a single prime number.)

• One way to find the prime factorization of a number is to use a *factor tree*.

Divisibility Tests and Factoring

Example: Factor 4,620.

Solution:



$$4,620 = 2 \cdot 3 \cdot 7 \cdot 11 \cdot 2 \cdot 5 = 2^2 \cdot 3 \cdot 5 \cdot 7 \cdot 11$$

Example: Factor 1050

Great Dilemma of our Times:

Hot Dog Buns are sold in packs of 8 Hot Dogs are sold in packs of 10

What is the smallest number of hot dogs in buns that can be made with no leftovers?

DEFINITION The **greatest common divisor** or **GCD** of two natural numbers is the largest natural number that divides both numbers.

Examples:

10 is the GCD of 30 and 70

9 is the GCD of 27 and 900

1 is the GCD of 5 and 11

To find the GCD of two numbers:

- find the prime factorization of both numbers (with factor trees).
- the primes (and their multiples) that they have in common is the GCD.
- if they have nothing in common then the GCD is just 1.

Example: The GCD of 1050 and 768

$$1050 = 2 \times 3 \times 5 \times 5 \times 7$$

$$768 = 2 \times 3$$

Example: The GCD of 220 and 273

$$220 = 2 \times 2 \times 5 \times 11$$

$$273 = 3 \times 7 \times 13$$

Example: The GCD of 1944 and 26244

$$1944 = 2^3 \times 3^5$$

$$26244 = 2^2 \times 3^8$$

DEFINITION The **least common multiple** or **LCM** of two natural numbers is the smallest natural number that is a multiple of both numbers.

Examples:

210 is the LCM of 30 and 70

2700 is the LCM of 27 and 900

55 is the LCM of 5 and 11

Example with 28 and 42

Multiples of 28:

28, 56, 84, 112, 140, 168, 196, 224, 252, ...

Multiples of 42:

42, 84, 126, 168, 210, 252, 294, ...

Common Multiples:

Least Common Multiple:

To find the LCM of two numbers:

- find the prime factorization of both numbers (with factor trees).
- the product of the bigger multiple of each prime is the LCM.

Example: The LCM of 220 and 1672

$$220 = 2 \times 2 \times 5 \times 11$$

$$1672 = 2 \times 2 \times 2 \times 11 \times 19$$

Example: The LCM of 220 and 273

$$220 = 2 \times 2 \times 5 \times 11$$

$$273 = 3 \times 7 \times 13$$

Great Dilemma of our Times:

Hot Dog Buns are sold in packs of 8 Hot Dogs are sold in packs of 10

What is the smallest number of hot dogs in buns that can be made with no leftovers?

Greatest Common Divisors and Least Common Multiples

FINDING THE GCD AND LCM BY USING FACTORIZATION To find the GCD and LCM of two numbers, do this:

- 1. Factor both numbers, and write each as a product of powers of primes.
- To calculate the GCD, multiply the *smallest* powers of any primes that are common to both numbers.
- To calculate the LCM, multiply the *largest* powers of all primes that occur in either number.

Alternative method using powers

Example: The GCD of 600 and 540

```
One 3 divides both. One 5 divides both. 600 = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 5 \cdot 5 \text{ and } 540 = \underbrace{2 \cdot 2}_{\text{Two 2s divide both.}}^{\text{One 5 divides both.}}^{\text{One 5 divides both.}}
```

Write $600 = 2^3 \cdot 3^1 \cdot 5^2$ and $540 = 2^2 \cdot 3^3 \cdot 5^1$.

In forming the GCD, we multiply the 2², the 3¹, and 5¹, which were the *smallest powers* of the primes that divide both numbers.

So the GCD is $2^2 \cdot 3^1 \cdot 5^1$.

Alternative method using powers

Example: The LCM of 600 and 540

```
600 requires three 2s. 540 requires three 3s. 600 = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 5 \cdot 5 and 540 = 2 \cdot 2 \cdot 3 \cdot 3 \cdot 3 \cdot 5. 600 requires two 5s.
```

Write $600 = 2^3 \cdot 3^1 \cdot 5^2$ and $540 = 2^2 \cdot 3^3 \cdot 5^1$.

Then in forming the LCM, we multiply the 2^3 , the 3^3 , and 5^2 , which were the *highest powers* of the primes that divide either number. So, the LCM is $2^3 \cdot 3^3 \cdot 5^2$.

Greatest Common Divisors and Least Common Multiples

If we look at what happened in the last two examples carefully, we see the following pattern:

$$600 = 2^{3} 3^{1} 5^{2}$$

$$540 = 2^{2} 3^{3} 5^{1}$$

Multiplying the 's gives the LCM.

Multiplying the os gives the GCD.

Applying the GCD and LCM

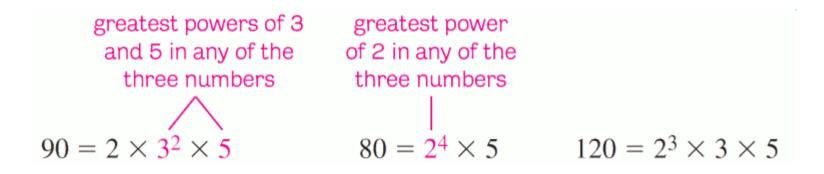
Example:

Assume that bullet trains have just departed from Tokyo to Osaka, Niigata, and Akita. If a train to Osaka departs every 90 minutes, a train to Niigata departs every 120 minutes, and a train to Akita departs every 80 minutes, when will all three trains again depart at the same time?

(solution on next slide)

Applying the GCD and LCM

Solution:



$$2^4 \times 3^2 \times 5 = 720 \text{ minutes} = 12 \text{ hours}$$